Arbitrary High Order Discontinuous Galerkin Schemes

نویسندگان

  • M. Dumbser
  • C.-D. Munz
چکیده

In this paper we apply the ADER one step time discretization to the Discontinuous Galerkin framework for hyperbolic conservation laws. In the case of linear hyperbolic systems we obtain a quadrature-free explicit single-step scheme of arbitrary order of accuracy in space and time on Cartesian and triangular meshes. The ADERDG scheme does not need more memory than a first order explicit Euler time-stepping scheme. This becomes possible because of an extensive use of the governing equations inside the numerical scheme. In the nonlinear case, quadrature of the ADER-DG scheme in space and time is performed with Gaussian quadrature formulae of suitable order of accuracy. We show numerical convergence results for the linearized Euler equations up to 10th order of accuracy in space and time on Cartesian and triangular meshes. Numerical results for the nonlinear Euler equations up to 6th order of accuracy in space and time are provided as well. In this paper we also show the possibility of applying a linear reconstruction operator of the order 3N +2 to the degrees of freedom of the DG method resulting in a numerical scheme of the order 3N + 3 on Cartesian grids where N is the order of the original basis functions before reconstruction.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On positivity-preserving high order discontinuous Galerkin schemes for compressible Euler equations on rectangular meshes

We construct uniformly high order accurate discontinuous Galerkin (DG) schemes which preserve positivity of density and pressure for Euler equations of compressible gas dynamics. The same framework also applies to high order accurate finite volume (e.g. essentially nonoscillatory (ENO) or weighted ENO (WENO)) schemes. Motivated by [18, 24], a general framework, for arbitrary order of accuracy, ...

متن کامل

On the geometric conservation law for high-order discontinuous Galerkin discretizations on dynamically deforming meshes

An approach for constructing high-order Discontinuous Galerkin schemes which preserve discrete conservation in the presence of arbitrary mesh motion, and thus obey the GCL, is derived. The approach is formulated for the most general case where only the coordinates defining the mesh elements are known at discrete locations in time, and results in the prescription of higher-order quadrature rules...

متن کامل

An arbitrary high order discontinuous Galerkin scheme for the elastodynamic equations

We present in this paper the formulation of a non-dissipative arbitrary high order time domain scheme for the elastodynamic equations. Our approach combines the use of an arbitrary high order discontinuous Galerkin interpolation with centred flux in space, with an arbitrary high order leapfrog scheme in time. Numerical two dimensionnal results are presented for the schemes from order two to ord...

متن کامل

Compactness Properties of the DG and CG Time Stepping Schemes for Parabolic Equations

It is shown that for a broad class of equations that numerical solutions computed using the discontinuous Galerkin or the continuous Galerkin time stepping schemes of arbitrary order will inherit the compactness properties of the underlying equation. Convergence of numerical schemes for a phase field approximation of the flow of two fluids with surface tension is presented to illustrate these r...

متن کامل

Convergence of Discontinuous Galerkin Approximations of an Optimal Control Problem Associated to Semilinear Parabolic Pde’s

A discontinuous Galerkin finite element method for an optimal control problem related to semilinear parabolic PDE’s is examined. The schemes under consideration are discontinuous in time but conforming in space. Convergence of discrete schemes of arbitrary order is proven. In addition, the convergence of discontinuous Galerkin approximations of the associated optimality system to the solutions ...

متن کامل

Convergence of a Discontinuous Galerkin Method for the Miscible Displacement under Minimal Regularity

Discontinuous Galerkin time discretizations are combined with the mixed finite element and continuous finite element methods to solve the miscible displacement problem. Stable schemes of arbitrary order in space and time are obtained. Under minimal regularity assumptions on the data, convergence of the scheme is proved by using compactness results for functions that may be discontinuous in time.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004